За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим. Большое внимание уделяется геометрическому смыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит читателя с такими понятиями, как многообразия, однопараметрические группы диффеоморфизмов, касательные пространства и расслоения. В число рассматриваемых примеров из механики входит исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс. Книга предназначена для студентов и аспирантов математических факультетов университетов и вузов с расширенной программой по математике.
Рейтинг издания
Автор:
Арнольд В.И.
Издатель:
Московский центр непрерывного математического образования (МЦНМО)
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других - как геометрические соображения помогают понять свойства их решений.
За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим. Большое внимание уделяется геометрическому смыслу основных понятий.
Предлагаемая монография посвящена систематизации результатов исследований Пермского семинара о новом подходе к задачам классического вариационного исчисления.
Учебное пособие является логическим продолжением курса «Теория пределов, непрерывность и дифференцируемость функций», способствует пониманию и развитию навыков вычисления интегралов и решения дифференциальных у
За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим. Большое внимание уделяется геометрическому смыслу основных понятий.